654 research outputs found

    Origin and Detection of Microstructural Clustering in Fluids with Spatial-Range Competitive Interactions

    Get PDF
    Fluids with competing short-range attractions and long-range repulsions mimic dispersions of charge-stabilized colloids that can display equilibrium structures with intermediate range order (IRO), including particle clusters. Using simulations and analytical theory, we demonstrate how to detect cluster formation in such systems from the static structure factor and elucidate links to macrophase separation in purely attractive reference fluids. We find that clusters emerge when the thermal correlation length encoded in the IRO peak of the structure factor exceeds the characteristic lengthscale of interparticle repulsions. We also identify qualitative differences between the dynamics of systems that form amorphous versus micro-crystalline clusters.Comment: 6 pages, 5 figure

    Theory of high-energy emission from the pulsar/Be-star system PSR 1259−-63 I: radiation mechanisms and interaction geometry

    Full text link
    We study the physical processes of the PSR B1259-63 system containing a 47 ms pulsar orbiting around a Be star in a highly eccentric orbit. Motivated by the results of a multiwavelength campaign during the January 1994 periastron passage of PSR B1259-63, we discuss several issues regarding the mechanism of high-energy emission. Unpulsed power law emission from the this system was detected near periastron in the energy range 1-200 keV. We find that the observed high energy emission from the PSR B1259-63 system is not compatible with accretion or propeller-powered emission. Shock-powered high-energy emission produced by the pulsar/outflow interaction is consistent with all high energy observations. By studying the evolution of the pulsar cavity we constrain the magnitude and geometry of the mass outflow outflow of the Be star. The pulsar/outflow interaction is most likely mediated by a collisionless shock at the internal boundary of the pulsar cavity. The system shows all the characteristics of a {\it binary plerion} being {\it diffuse} and {\it compact} near apastron and periastron, respectively. The PSR B1259-63 cavity is subject to different radiative regimes depending on whether synchrotron or inverse Compton (IC) cooling dominates the radiation of electron/positron pairs advected away from the inner boundary of the pulsar cavity. The highly non-thermal nature of the observed X-ray/gamma-ray emission near periastron establishes the existence of an efficient particle acceleration mechanism within a timescale shown to be less than ∌102−103\sim 10^2-10^3 s. A synchrotron/IC model of emission of e\pm-pairs accelerated at the inner shock front of the pulsar cavity and adiabatically expanding in the MHD flow provides an excellent explanation of the observed time variableX-ray flux and spectrum from the PSRComment: 68 pages, accepted for publication in the Astrophys. J. on Aug. 26, 199

    Expression of human A53T alpha-synuclein in the rat substantia nigra using a novel AAV1/2 vector produces a rapidly evolving pathology with protein aggregation, dystrophic neurite architecture and nigrostriatal degeneration with potential to model the pathology of Parkinson's disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The pathological hallmarks of Parkinson's disease (PD) include the presence of alpha-synuclein (α-syn) rich Lewy bodies and neurites and the loss of dopaminergic (DA) neurons of the substantia nigra (SN). Animal models of PD based on viral vector-mediated over-expression of α-syn have been developed and show evidence of DA toxicity to varying degrees depending on the type of virus used, its concentration, and the serotype of vector employed. To date these models have been variable, difficult to reproduce, and slow in their evolution to achieve a desired phenotype, hindering their use as a model for testing novel therapeutics. To address these issues we have taken a novel vector in this context, that can be prepared in high titer and which possesses an ability to produce neuronally-directed expression, with expression dynamics optimised to provide a rapid rise in gene product expression. Thus, in the current study, we have used a high titer chimeric AAV1/2 vector, to express human A53T α-syn, an empty vector control (EV), or green fluorescent protein (GFP), the latter to control for the possibility that high levels of protein in themselves might contribute to damage.</p> <p>Results</p> <p>We show that following a single 2 Όl injection into the rat SN there is near complete coverage of the structure and expression of A53T α-syn or GFP appears throughout the striatum. Within 3 weeks of SN delivery of their respective vectors, aggregations of insoluble α-syn were observed in SN DA neurons. The numbers of DA neurons in the SN were significantly reduced by expression of A53T α-syn (52%), and to a lesser extent by GFP (24%), compared to EV controls (both <it>P </it>< 0.01). At the level of the striatum, AAV1/2-A53T α-syn injection produced dystrophic neurites and a significant reduction in tyrosine hydroxylase levels (by 53%, <it>P </it>< 0.01), this was not seen in the AAV1/2-GFP condition.</p> <p>Conclusions</p> <p>In the current implementation of the model, we recapitulate the primary pathological hallmarks of PD, although a proportion of the SN damage may relate to general protein overload and may not be specific for A53T α-syn. Future studies will thus be required to optimise the dose of AAV1/2 employed before fully characterizing this model. The dynamics of the evolution of the pathology however, provide advantages over current models with respect to providing an initial screen to assess efficacy of novel treatments that might prevent/reverse α-syn aggregation.</p

    HST-NICMOS Observations of Terzan 5: Stellar Content and Structure of the Core

    Get PDF
    We report results from HST-NICMOS imaging of the extremely dense core of the globular cluster Terzan 5. This highly obscured bulge cluster has been estimated to have one of the highest collision rates of any galactic globular cluster, making its core a particularly conducive environment for the production of interacting binary systems. We have reconstructed high-resolution images of the central 19"x19" region of Terzan 5 by application of the drizzle algorithm to dithered NIC2 images in the F110W, F187W, and F187N near-infrared filters. We have used a DAOPHOT/ALLSTAR analysis of these images to produce the deepest color-magnitude diagram (CMD) yet obtained for the core of Terzan 5. We have also analyzed the parallel 11"X11" NIC1 field, centered 30" from the cluster center and imaged in F110W and F160W, and an additional NIC2 field that is immediately adjacent to the central field. This imaging results in a clean detection of the red-giant branch and horizontal branch in the central NIC2 field, and the detection of these plus the main-sequence turnoff and the upper main sequence in the NIC1 field. We have constructed an H versus J-H CMD for the NIC1 field. We obtain a new distance estimate of 8.7 kpc, which places Terzan 5 within less than 1 kpc of the galactic center. We have also determined a central surface-density profile which results in a maximum likelihood estimate of 7.9" +/- 0.6" for the cluster core radius. We discuss the implications of these results for the dynamical state of Terzan 5.Comment: 17 pages, 9 figures, accepted for publication in ApJ, for May 20, 200

    Discovery of Two Gravitationally Lensed Quasars with Image Separations of 3 Arcseconds from the Sloan Digital Sky Survey

    Full text link
    We report the discovery of two doubly-imaged quasars, SDSS J100128.61+502756.9 and SDSS J120629.65+433217.6, at redshifts of 1.838 and 1.789 and with image separations of 2.86'' and 2.90'', respectively. The objects were selected as lens candidates from the Sloan Digital Sky Survey (SDSS). Based on the identical nature of the spectra of the two quasars in each pair and the identification of the lens galaxies, we conclude that the objects are gravitational lenses. The lenses are complicated; in both systems there are several galaxies in the fields very close to the quasars, in addition to the lens galaxies themselves. The lens modeling implies that these nearby galaxies contribute significantly to the lens potentials. On larger scales, we have detected an enhancement in the galaxy density near SDSS J100128.61+502756.9. The number of lenses with image separation of ~3'' in the SDSS already exceeds the prediction of simple theoretical models based on the standard Lambda-dominated cosmology and observed velocity function of galaxies.Comment: 24 pages, 9 figures, accepted for publication in Ap

    Sediment structure and physicochemical changes following tidal inundation at a large open coast managed realignment site

    Get PDF
    Managed realignment (MR) schemes are being implemented to compensate for the loss of intertidal saltmarsh habitats by breaching flood defences and inundating the formerly defended coastal hinterland. However, studies have shown that MR sites have lower biodiversity than anticipated, which has been linked with anoxia and poor drainage resulting from compaction and the collapse of sediment pore space caused by the site's former terrestrial land use. Despite this proposed link between biodiversity and soil structure, the evolution of the sediment sub-surface following site inundation has rarely been examined, particularly over the early stages of the terrestrial to marine or estuarine transition. This paper presents a novel combination of broad- and intensive-scale analysis of the sub-surface evolution of the Medmerry Managed Realignment Site (West Sussex, UK) in the three years following site inundation. Repeated broad-scale sediment physiochemical datasets are analysed to assess the early changes in the sediment subsurface and the preservation of the former terrestrial surface, comparing four locations of different former land uses. Additionally, for two of these locations, high-intensity 3D-computed X-ray microtomography and Itrax micro-X-ray fluorescence spectrometry analyses are presented. Results provide new data on differences in sediment properties and structure related to the former land use, indicating that increased agricultural activity leads to increased compaction and reduced porosity. The presence of anoxic conditions, indicative of poor hydrological connectivity between the terrestrial and post-inundation intertidal sediment facies, was only detected at one site. This site has experienced the highest rate of accretion over the terrestrial surface (ca. 7 cm over 36 months), suggesting that poor drainage is caused by the interaction (or lack of) between sediment facies rather than the former land use. This has significant implications for the design of future MR sites in terms of preparing sites, their anticipated evolution, and the delivery of ecosystem services

    Radiation therapy generates platelet-activating factor agonists

    Get PDF
    Pro-oxidative stressors can suppress host immunity due to their ability to generate oxidized lipid agonists of the platelet-activating factor-receptor (PAF-R). As radiation therapy also induces reactive oxygen species, the present studies were designed to define whether ionizing radiation could generate PAF-R agonists and if these lipids could subvert host immunity. We demonstrate that radiation exposure of multiple tumor cell lines in-vitro, tumors in-vivo, and human subjects undergoing radiation therapy for skin tumors all generate PAF-R agonists. Structural characterization of radiation-induced PAF-R agonistic activity revealed PAF and multiple oxidized glycerophosphocholines that are produced non-enzymatically. In a murine melanoma tumor model, irradiation of one tumor augmented the growth of the other (non-treated) tumor in a PAF-R-dependent process blocked by a cyclooxygenase-2 inhibitor. These results indicate a novel pathway by which PAF-R agonists produced as a byproduct of radiation therapy could result in tumor treatment failure, and offer important insights into potential therapeutic strategies that could improve the overall antitumor effectiveness of radiation therapy regimens

    Use of sonic tomography to detect and quantify wood decay in living trees.

    Get PDF
    Premise of the studyField methodology and image analysis protocols using acoustic tomography were developed and evaluated as a tool to estimate the amount of internal decay and damage of living trees, with special attention to tropical rainforest trees with irregular trunk shapes.Methods and resultsLiving trunks of a diversity of tree species in tropical rainforests in the Republic of Panama were scanned using an Argus Electronic PiCUS 3 Sonic Tomograph and evaluated for the amount and patterns of internal decay. A protocol using ImageJ analysis software was used to quantify the proportions of intact and compromised wood. The protocols provide replicable estimates of internal decay and cavities for trees of varying shapes, wood density, and bark thickness.ConclusionsSonic tomography, coupled with image analysis, provides an efficient, noninvasive approach to evaluate decay patterns and structural integrity of even irregularly shaped living trees
    • 

    corecore